

(4); C_8H_7NO + 133 (95) C_7H_7N 105 (100).

$$[\alpha]_{24}^{\lambda} = \frac{589}{-34.8} \frac{578}{-34.8} \frac{546}{-39.0} \frac{436 \text{ nm}}{-58.0} \quad (c = 1.0)$$

Dehydroisosenetin (7). Farbloses, zähes Öl, IR: $>C=O$ 1773, 1750, 1725 cm^{-1} . MS: M^+ m/e 387.131 (3%) (ber. für $C_{20}H_{21}O_2N$ 387.132); C_8H_7NO $^{7+}$ 133(100); C_7H_7N $^{7+}$ 105 (28).

$$[\alpha]_{24}^{\lambda} = \frac{589}{-45.6} \frac{578}{-46.1} \frac{546}{-48.8} \frac{436 \text{ nm}}{-89.0} \quad (c = 0.5)$$

Anerkennung—Der Deutschen Forschungsgemeinschaft danken wir für die Förderung dieser Arbeit, dem East African Herbar, Kenia, für das Pflanzenmaterial.

LITERATUR

- Bohlmann, F., Knoll, K. H., Zdero, C., Mahanta, P. K., Grenz, M., Suwita, A., Ehlers, D., Le Van, N., Abraham, W. R. und Natu, A. A. (1977) *Phytochemistry* **16**, 965.

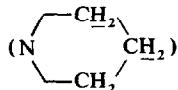
Phytochemistry, 1978, Vol. 17, pp. 601–602. Pergamon Press. Printed in England.

A NEW PIPERIDINE ALKALOID FROM *PIPER PEEPULOIDES*

O. P. GUPTA*, S. C. GUPTA*, K. L. DHAR† and C. K. ATAL†

*CCRIMH Unit and †Regional Research Laboratory, Jammu-Tawi 180001, India

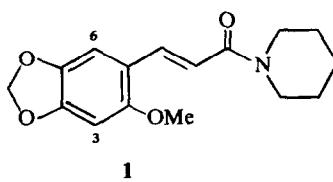
(Received 13 May 1977)


Key Word Index—*Piper peepuloides*; Piperaceae; 2-methoxy-4, 5-methylenedioxy cinnamoyl piperidine

The genus *Piper* has received considerable attention in recent years because of its reputation for producing a number of new chemical compounds, [1–8]. In earlier communications [1, 9, 10] we have reported the presence of a new pyrrolidine alkaloid, peepuloidin, from the leaves of *P. peepuloides* and from the fruits of the same plant a number of interesting compounds such as [+]–diacidesmin, pipataline, 5-hydroxy,3',4',7-trimethoxyflavone, 5-hydroxy-4', 7-dimethoxyflavone, *N*-isobutyl dodeca-*trans*-2-*trans*-4-dienamide, *N*-isobutyldeca-*trans*-2-*trans*-4-dienamide and sesamin. We now wish to report the isolation and structure elucidation of a new piperidine alkaloid from the leaves of *P. peepuloides*, identified as 2-methoxy-4, 5-methylenedioxy cinnamoyl piperidine.

The petrol extract of the leaves on repeated column chromatography over neutral Al_2O_3 and repeated crystallisation furnished a white crystalline compound.

The compound analysed for $C_{16}H_{19}NO_4$, M^+ -289.1318 (Cal. for $C_{16}H_{19}NO_4$, M^+ 289.1313); UV 333, 305 and 240 nm. The IR (KBr) spectrum of the compound showed characteristic bands for $>C=O$ (1650 cm^{-1})


indicating the compound to be an amide and lack of an $—NH$ stretching frequency demonstrated that it was a tertiary amide; $C=C$ (1660 cm^{-1}) and methylenedioxy group ($1260, 1040, 930 \text{ cm}^{-1}$). The 60 MHz PMR ($CDCl_3$) spectrum of the compound showed a broad multiplet between δ 1.0 and 1.9 which is attributed to 6 protons

a triplet and a multiplet at δ 3.30 and 3.55 respectively

accounts for 4 protons (N — CH_2 —); a singlet at 3.75 has CH_2 been assigned to 3 protons ($O—Me$). A doublet at 5.85 (1H, $J = 14 \text{ Hz}$), indicating a *trans* olefinic proton (α) adjacent to carbonyl; a singlet at 5.85 is due to two protons of methylenedioxy group. A doublet at 6.78 ($J = 14 \text{ Hz}$) is assigned to one (β) olefinic proton, singlets at δ 6.45 and 6.9 are attributed to C-3 and C-6 aromatic protons respectively. The MS is also in complete agreement with the proposed structure (1).

On hydrogenation (Pd/C) the compound quickly absorbed one mole of H_2 to give a waxy dihydro derivative (M^+ -291). The $KMnO_4$ oxidation of the compound furnished an acid mp 147–147.5° (lit., [11] mp 148–149°), identified as 2-methoxy-4, 5-methylenedioxy benzoic acid.

EXPERIMENTAL

The air dried powdered leaves of *P. peepuloides* Roxb. (0.9 kg) were continuously extracted in a Soxhlet with petrol (bp 60–80°) for 75 hr. The extract was concentrated under red. pres. and the resultant viscous liquid was subjected to column chromatography over neutral Al_2O_3 and eluted with different solvents in order of increasing polarity. The fractions eluted with C_6H_6 gave a crude viscous liquid which on repeated column chromatography over

neutral Al_2O_3 gave a dirty white crystalline compound, mp 90–92°. Repeated crystallization from petrol– Me_2CO furnished a TLC pure, white crystalline compound (180 mg) mp 98–99°. R_f 0.36, EtOAc–*n*-hexane, 1:1.

Hydrogenation. The compound (50 mg) in MeOH (200 ml) was hydrogenated over 10% Pd/C (40 mg) at room temp. and pres. Absorption of H_2 was complete after 1 hr during which 1 mole of H_2 was absorbed. The catalyst was filtered and the solvent removed under red. pres. leaving behind a viscous residue. The residue (40 mg) on purification by chromatography over neutral Al_2O_3 yielded a TLC pure, white waxy compound, $\text{C}_{16}\text{H}_{21}\text{NO}_4$, $M^+ - 291$ (R_f 0.42, EtOAc–*n*-hexane, 1:1).

Oxidation. To the compound (50 mg) dissolved in 3 ml Me_2CO was added KMnO_4 in small batches and the mixture allowed to reflux. Addition of KMnO_4 was stopped when a permanent pink colour persisted in the mixture. MeCO_2 was removed and 1 ml of 10% KOH soln was added and filtered hot. The residue was washed with hot H_2O and the filtrate added to the alkaline aq. portion. The aq. soln was extracted with Et_2O to remove the unreacted alkaloid and then acidified with dil. HCl to pH 2. This was extracted $\times 3$ with Et_2O , solvent removed and the residue chromatographed over Si gel. EtOAc fractions yielded a crystalline residue which on repeated crystallisation from Me_2CO –EtOAc (1:1) furnished a white crystalline compound (5 mg), $\text{C}_9\text{H}_8\text{O}_5$, mp 147–147.5°, identified as 2, methoxy-4,5-methylene-dioxy benzoic acid by PMR, IR and MS.

Acknowledgements—OPG and SCG express their thanks to the Central Council for Research in Indian Medicine and Homeo-

pathy, New Delhi (India) for financial help for the successful completion of this work. Thanks are also due to Prof. J. M. Edwards, University of Connecticut, U.S.A. for PMR and MS.

REFERENCES

1. Atal, C. K., Dhar, K. L. and Singh, J. (1975) *Lloydia* **38**, 256 and references therein.
2. Gupta, O. P., Dhar, K. L. and Atal, C. K. (1976) *Phytochemistry* **15**, 425.
3. Gupta, O. P., Gupta, S. C., Dhar, K. L. and Atal, C. K. *Phytochemistry* **16**, 1436.
4. Gupta, O. P., Gupta, S. C., Dhar, K. L. and Atal, C. K. (1976) *Indian J. Chem.* **14B**, 912.
5. Gupta, O. P., Atal, C. K. and Gaind, K. N. (1972) *Indian J. Chem.* **10**, 874.
6. Gupta, O. P., Atal, C. K. and Gaind, K. N. (1972) *Phytochemistry* **11**, 2648.
7. Gupta, S. C., Gupta, O. P., Dhar, K. L. and Atal, C. K. (1975) *Indian J. Pharm.* **37**, 172.
8. Sondengam, B. L., Kimbu, S. F., Nijimi, T., Okogun, J. I. and Ekong, D. E. U. (1977) *Tetrahedron Letters* 367.
9. Raina, M. L., Dhar, K. L. and Atal, C. K. (1973) *Planta Med.* **23**, 295.
10. Raina, M. L. (1976) Ph. D Thesis, Kashmir Univ., Kashmir India.
11. Campbell, K. N., Hopper, P. and Campbell (1951) *J. Org. Chem.* **16**, 1736.